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Abstract. We investigate, using numelical computation of the eigenvalues of 
short chains, the critical behaviour of two composite spin models, which interpolate 
smoothly between isotropic Heisenberg mains with different values of S. For the 
first model which interpolates between S = $ and S = we find that the model 
L critical over the whole range and the valuer of the central charge and critic$ 
exponents (scaling dimensions) appear tobe eonstsd in the thermodynamic Limit. In 
the second model, which interpolates between S = $ and S = 1 we find that, except 
at S = i, the central charge is effectively zem, implying a non-critical behaviour. 

1. Introduction 

Over the last few years critical properties of spin models have been studied with 
increasing interest. There are a number of reasons for this interest, and one of them is 
the conjecture made by Haldane [l] some while ago of the difference between integer 
spin and half-integer spin antiferromagnets. Another r e w n  for this interest is the 
recent discovery of the conformal invariance [2] at the transition point of the models 
exhibiting a second order phase transition. Spin models provide a good testing ground 
for studying the consequences [3] of this invariance. 

A field of research which quite recently has become a part of the studies concerning 
criticality is that of integrable models [4]. An effective use [5] of the methods based on 
Bethe’s ansats has proved to be a powerful way of evaluating quantities characteristic 
of conformally invariant models. The usefulness of these methods relies on the fact that 
the spectrum of the integrable SU(2) s p i n 3  models consists [6] of a gapless doublet 
of S = $ spin waves which form the (two-particle) singlet and triplet excitations of 
physical states. 

The critical exponents of the integrable spin models [7] are smooth functions of 
the length of the spin S. In contrast with this, the isotropic and nearly isotropic 
Heisenberg antiferromagnets with a half-integer spin are all believed [1,8] to have the 
same critical exponents, and those with an integer spin are believed [1,8] to be non- 
critical. A slightly worrying feature of the original [PI analysis leading to  this result 
is, however, that when applied to the integrable spin models it produces [9] for these 
the same results as for the Heisenberg antiferromagnets, i.e. half-integer spin models 
should be critical but integer spin models non-critical. The analysis was based on a 
mapping of the models to a quantum field theory model, the nonlinear U model. 
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Subsequently a modified [lo] form of the method has been developed which gives 
more insight into this very subtle prohlem. Based on the modified version of the 
analysis [lo], and also on other even earlier arguments [ll], it is now expected that the 
integrable spin models correspond to multicritical points in the space of couplings. Any 
perturbation of the couplings specific to the integrable models will drive the models 
away from the integrable points, and the spectra and the correlation functions of the 
models will change accordingly. In a model with an integer spin these perturbations 
will cause a gap to appear in the excitation spectrum and the correlation functions 
will decay exponentially. In a model with a half-integer spin the spectrum will remain 
gapless, i.e. it is critical, and the critical exponents of the correlation functions will 
change to become those of the S = f isotropic Beisenberg antiferromagnet. 

There is now also numerical evidence [Il-131 for the different critical behaviour 
of the integrable and non-integrable spin models. The work of Ziman and Schulz [l l]  
in particular is very interesting, because they have found a method of getting rid of 
the leading finite size correction, which is logarithmic, to the scaling dimensions of 
the relevant operators. The idea of Ziman and Schulz is to consider a suitable linear 
combination of the primary singlet-triplet gap and the smallest singlet-singlet gap, 
and is based on the degeneracy in the infinite length limit of these gaps. In this way 
they were able to show in a model which interpolates between the integrable S = $ 
model and the usual S = 3 Heisenberg model that whenever the model is away from 
the integrable point its critical exponents are those of the S = $ Heisenberg model. 

In the analysis of spin models with spin higher than a half the composite spin 
representation has been shown [9,14,15] to provide new insights. Having at each 
lattice site an equal number of shorter spins, the original spin problem is now replaced 
by that of a set of coupled chains with shorter spins. It is then possible to have at each 
site a whole sequence of total spins. The composite spin representation can however 
be used because the low lying states of the composite spin Hamiltonian are [9,14] in 
the subspace of the largest total spin. The lowest part of the spectrum of a S = 1 
model for example is exactly given by two coupled S = chains. A S = $ model 
can be represented by either three coupled S = $ chains or two coupled chains with 
S = f and S = 1 ,  respectively. Varying the couplings of the chains makes it possible 
to interpolate between models with different spin lengths. It is natural to extend the 
previous work 19,141, and ask in a different way how the critical behaviour is changed 
when we interpolate between models with different spin lengths. 

A convenient way to study the critical behaviour ofspin models is to  calculate [II- 
131 their conformal anomaly or central charge and the anomalous or scaling dimensions 
of the relevant operators The central charge c, which is used to divide the models into 
different universality classes, can be easily determined from the finite size corrections to 
the ground state energy of the model. Conformal invariance predicts that, for a chain 
of N sites, the ground state energy per site, E , ( N ) N - ' ,  approaches its asymptotic 
value em as [2] 

where w is the spin wave velocity. 
The scaling dimensions of the relevant operators can be determined from the finite 

size corrections to the excitation energies. The excited states related to an operator + form 'towers' characterized by the scaling dimension X, and the spin S, of that 
operator such that the excitation energies and the corresponding momenta can be 
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written as [2] 

2av 
En,,JN) = E J N )  + y ( X +  + n + n‘) + CJ(N-’) 

F’,,+,(N) = -(S+ + n - n’) + O(N-’) 
(1.2) 277 

N n,n‘ = 0,1,2,. . . . 

In the work reported in this paper we have only considered the lowest excited 
states with n = n’ = 0, i.e. excitation energia 

In this paper we shall analyse the composite spin models by studying their possible 
conformal invariance. We wish to determine in particular the crossover from the S = f 
behaviour of the decoupled chains to the S = behaviour of the ‘completely’ coupled 
chains. This crossover will be contrasted with that of the supposedly non-critical 
S = 1 chain composed of two coupled S = f chains. In section 2 we shall introduce 
the composite spin models’ which are used in this work. The numerical results for the 
central charge and for the scaling dimensions will be given in section 3, and the results 
will be discussed in section 4. 

2. Composite spin models 

A general spin model with isotropic nearest neighbour couplings can be defined as 

i = l  LEO 

where ak are arbitrary constants and lSil = S. The usual Heisenberg model 
corresponds to the case when only a, is different from zero. The integrable spin models 
correspond to particular choices of the constants ax which are different for each S. In 
this work we shall concentrate on the Heisenberg case, but a similar analysis could be 
made [14] of the more general model. 

As discussed in the previous section the composite spin models can also be viewed 
as coupled spin chain problems. The simplest case is that of two chains, one with 
spins ui the other with spins T; .  The operators ui and 7; are not necessarily spin-i 
operators, the only restriction we impose on these operators is that all spins on the 
same chain are equal, i.e. luil = U and 1 ~ ~ 1  = r independent of the site i. This ensures 
that at X = 0 and X = 1 the total spin at each site is a good quantum number. The 
Hamiltonian of the simplest non-trivial coupled two-chain problem can be expressed 
in the form 

I f = ~ { ~ ; . d i + ~ + T ~ . r i + l  + X u i . T i t l + X ~ ; . u i + , } .  (2.2) 

The coupling terms between the two chains are in (2.2) multiplied by the ‘interpolation 
parameter’ A,  and they will be treated as a perturbation of the uncoupled chains. 
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At X = 0 the model (2.2) obviously describes two uncoupled chains. The properties 
of the model now depend on the spin lengths of the individual chains, U and T. We 
have shown earlier [9,14] that if e.g. U = T = 1 the lowest part of the spectrum at 
X = 1 is identical to that of a single spin-1 cham. It is expected in general that the 
twc-chain model will be at X = 1 a good representation of the single chain model with 
spin S = U + T. If U = T = 3 we shall call the Hamiltonian (2.2) the (2 x 4) model. 

Hamiltonian (2.2) can easily be generalized to include three chains with spins uj ,  
T, and pi. In this case the Hamiltonian is 

t'  

= x { P i  * Piti (Ti * nit1 i- Ti ' Tt+i -t Ami . (Titi + P i t i )  + XTi.  (Piti Qi+i) 
i 

Let us assume that (2.3) describes the (3 x 4) model with U = T = p = $. A t  X = 0 
the chains are again decoupled. Clearly at X = 1 the coupling will be so strong as to 
destroy the individuality of the chains. Varying A between these two limiting values 
will cause the properties of the model to cross over from the spin-$ behaviour to the 
spin-? behaviour. 

A i  X = 0 the finite size corrections to the ground state and excitation energies 
will appear independently in all three of the uncoupled chains. Therefore the central 
charge will be three times that of the S = 4 Heisenberg chain, c(X z 0) = 3. At 
X = 1 the central charge should be equal to that of the S = $ Heisenberg chain, i.e. 
c(X = 1) = 1 supposing that the critical properties of the two Heisenberg models are 
the same. We shall show in the next section our numerical result for c(X), 0 < X 4 1. 

The scaling dimension of both the S = 4 and S = $ Heisenberg chain is 
X = $. Since in the decoupled three-chain problem the lowest excitations arise 
from exciting only one of the chains, the composite spin model (2.3) should have 
[19] X(X = 0) = X(X = 1) = 0.5. Unfortunately, there are logarithmic terms in the 
finite size dependence of the excitation energies which make the evaluation of X rather 
difficult. We shall follow Ziman and Schulz and consider, instead of the lowest singlet, 
A,, and triplet, A,, gaps separately, the linear combination 

Since the singlet and triplet excitations are predicted to be degenerate in the 
thermodynamic limit, A defined by (2.4) should give the correct scaling dimension. 
The advantage of using (2.4) is that the leading logarithmic corrections are cancelled, 
and a much better estimate of the scaling dimension should be achieved. 

3. Numerical resul ts  

We have solved numerically the few lowest eigenenergies of the models (2.2) and (2.3). 
In these calculations for finite chains we have imposed periodic boundary conditions 
and determined by exact diagonalization or by the Lanczhs method the few lowest 
eigenstates in sectors characterized by the z-component of the total spin and by the 
momentum. For the (2 x f) model ( 2 4 ,  we have results for up to N = 10 sites, and 
for the (3 x 4) model (2.3), we have results for up to N = 8. At  the points X = 0 and 
X = 1 which correspond to the S = 4 and S = 1 ($) Heisenberg models, respectively, 
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our results coincide with the published numerical data for these models which exist 
for np to N = 18 in the S = 4 case [16], and for up to N = 16 (12) in the S = 1 ($) 
case 1131. In all cases the ground state of the system is a spin singlet state with zero 
momentum, and the first excited state is, at least in the range of X we consider, in the 
triplet spin sector. 

We shall first consider the (3 x i) model (2.3). In order to find if this model is 
critical, we have calculated its ground state energy for N and N+2, and inferred from 
these the central charge c by using (1.1). In this way we get successive estimates for c. 
The numerical value of the central charge depends also on the spin wave velocity which 
we have determined by numerically calculating the finite size spectrum. To improve 
the accuracy we have assumed that for finite chains the spectrum can be expressed in 
the form 

c ( k )  =A(X,N);+v(X,N)sink k 
(3.1) 

v(X, N) = v , ( N )  + v,(N)X + uz(N)X2 

where A(X, N )  is the gap between the lowest k = 0 and k = ?r states which is finite 
for all N < 00. We have also assumed that v(X, N) has a well defined expansion in A,  
and have found it is enough to include the terms up to the second order. 

We have assumed that u j ( N ) ,  j = 0,1,2, have well defined expansions in N - I ,  
and by using polynomial extrapolation to the limit N -+ 00 we find that 

.(A) 5 v(X, M) = f?r  + 2.1126X + 0.2526X2 

for the (3 x $) model. 
We show the central charge in figure 1 as a function of the interpolation parameter 

A. It appears from figure 1 that at X = 1 the central charge approaches the value c = 1 
which is the same as that of the S = $ Heisenberg model. This suggests that the S = $ 
and S = $ Heisenberg chains are in the same universality class, in agreement with 
[ll]. We note in figure 1 that for a given N there is a range of X over which c remains 
effectively constant at the S = $ value. This range increases as N increases and 
in the limit N -). m seems to become the whole interval 0 < X 4 1. This result 
supports our previous findings 19,141 for the composite spin model. A t  X = 0 the 
central charge approaches the expected value c = 3. To investigate better the scaling 
of c as a function of N we show in figure 2 a plot of c as a function of (In N ) - 3  which 
is the leading correction to c in S = f type models. We show in figure 2 only one 
intermediate value of A,  X = 0.25, because for X > 0.25 the curves approach the X = 1 
curve vary rapidly and would appear as one curve. This figure shows clearly the two 
limits in the scaling, c(X = 0) = 3 and c(X > 0) = 1. 

The other quantity we have determined for the (3 x $) model is the scaling 
dimension of the operator responsible for the primary gap in the finite size excitation 
spectrum. Because of the large finite size corrections in the primary gap which make 
the evaluation of the scaling dimension very difficult [ l l ,  121 we have used the method 
of [ll] as explained in the introduction. 

We show in figure 3 the scaling dimension related to the singlet-triplet and singlet- 
singlet gaps, and also the result of taking the linear combination of the two. We show 
the results for only N = 4 and N = 8 because the singlet-triplet curve for N = 6 would 
be too close to the N = 8 curve to be clearly seen. It is evident that drawing on the 
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I I I 1 1 1 
0 0,2 0.L Ob 0.8 1 

Figure 1. Central charge of the (3 x f )  
model. Filled circles mark the valuep which are  
delemined from calculated values for N and 
N + 2. The upper curve is the result for N = 4. 
and the lower ~ m v e  for N = 64. For A = 0 and 
A = 1 there are results for N = 8 and N = 10, 
and the expected Limiling values are  aLsc marked. 

I 
0.1 2 

Figure 2. Scding against (LnN)-’ of the 
extrapolated central charge of the (3 x 4 )  model. 
The numbers OD the right refer to the values of 
A. 

singlet-triplet results only [I21 would lead to an erroneous extrapolation of the scaling 
dimension, convergence is so slow that extremely long chains would be needed in order 
to find the true asymptotic behaviour. In contrast with this, the iinear combination 
of  the two scaling dimensions seems to converge very rapidly, giving reliable estimates 
already for rather short chains. This result is, of course, very much in agreement with 
the findings of Ziman and Schulz [ll], who, however, had a different model and used 
a completely different numerical procedure. Our numerical results, which for general 
X exist only for N up to 8, are consistent with a scaling dimension X = 0.5 for all 
0 < X 6 1 in the N i 00 limit. This is another indication of the S = $ like critical 
behaviour being generic for half-integer spin systems. 

According to [Ill the leading correction to the scaling dimension should be 
proportional to (In N ) - ’ .  We have therefore plotted in figure 4 the scaling dimension 
as a function of (In N)-’. We show the results mainly for X = 0 and X = 1 ,  the curves 
for other values of X lie between the X = 0 and X = 1 curves. For the available chain 
lengths the scaling dimensions of the singlet-triplet and singlet-singlet gaps are very 
far from their assumed asymptotic values. The linear combination of the two seems 
to scale quite well even for the short chains we could do numerically, the X = 0 curve 
is almost flat, but i t  is so close to the asymptotic value that the question of scaling is 
not very relevant. 

Our results for the (3 x i) model which interpolates between the S = 4 and S = $ 
Heisenberg chains seem strongly to indicate that this model is critical for all 0 4 X < 1. 
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X I  

0.0 
0.0 0.2 0.L 0.6 0.8 1.0 

Figure 3. Scaling dimensicn of the (3 x 4 )  
model. FuU circles (a) denote the singlet-triplet 
values, open circles (0) the singlet-singlet values. 
and mosses ( x )  the linear combination (2.4) of 
the two. The tines are guide for the eye. 

0.6 1 L ,n . - r -x - - - - - I I  0 

0.0 
0.0 0.1 0 2 0.3 0.L 0.5 
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. ., 

Figure 4. Scaling against (In A')-* of the scaling 
dimension of thc (3 x $) model. Symbols are the 
same as in figure 3. The numbers on the right 
refer to the values of A. The non-monotronic 
behaviour with respect to A is in accordance with 
ligule 3. 

We still have to prove, however, that the numerical analysis we have made is accurate 
enough to make possible a clear distinction between critical and non-critical models. 
To this end we have made the same analysis for the (2 x f )  model which interpolates 
between the S = $ and S = 1 Heisenberg chains. We describe next our results for the 
(2 x f) model of a quantity which would be the central charge if it existed. 

The spin wave velocity of the (2 x f) model is determined in the same way as that 
of the (3 x 2) model. Therefore we will find the correct velocity if there is no gap in 
the excitation spectrum at k = 0. We find that 

.(A) = $T + 2.5127X - 0.3333X'. (3.2) 

In figure 5 we show the central charge (if it exists) ?or the (2 x $) model as a 
function of X for various N .  This is calculated in the same way as figure 1 for the 
(3 x f )  model. The most obvious difference is that in figure 5 there does not appear 
to be a region over which c is effectively constant. The value of c in the limit N + 00 

appears to be small except at X = 0. To investigate this further we show in figure 6 
a plot of c as a function of (InN)-3 which is the expected form of the correction to 
the N-' scaling of E o ( N )  if the model is critical and is in the same universality class 
as the S = f Heisenberg chain. This figure shows rather clearly the difference in the 
limiting values for X = 0 and X # 0, and should be compared with figure 2. 
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Figure 5. 'Centrd d w g e '  of the ( 2  x f )  model 
which has been calculated in the -e way ea 
that of the (3 x f )  model. The c w e s  from top 
to bottom are the results for N = 4, 6 and 8, 
respectiwly. The results for N = 10 and 12 are 
shown only for A = 1, and the expected limiting 
value is marked for X = 0. 

Figure 6. Scaling again& ( I n N ) - 3  of the 
'central charge' of the (2 x $ )  modd. Symbols 
are the same as in figure 2. 

4. Discussion 

We have studied in this paper the finite size scaling properties of the ground state 
and the first few excited states of the (2  x f) model and (3 x f) model. These 
models interpolate between the S = $ Heisenberg chain and the S = 1 and S = $ 
Heisenberg chains, respectively. Our analysis complements that of Ziman and Schulz 
Ill] whose model interpolates between the integrable S = $ model and the S = ?j 
Heisenberg chain. Another aspect of our analysis is to estimate the usefulness of the 
numerical determination of the central charge and the scaling dimension as test of 
critical behaviour. 

Our results for the (3 x f )  model strongly support the conjecture we have made 
earlier [9,14] that, whenever X > 0, the model behaves rather like the S = $ Heisenberg 
chain. This conclusion is suggested by the scaling of the S = 3 like plateau in figure 
1. Our numerical findings lend also strong support to the conclusion that the central 
charge of the (3 x f )  model is c = 1 (for all X > 0), and its scaling dimension 
is X = $ [17]. Furthermore, these quantities seem to scale as a function of N in 
accordance with the leading logarithmic corrections to the corresponding quantities 
of the S = 4 Heisenberg chain [18].  

As to our numerical findings for the (2 x f) model, they also provide evidence for 
twofold conclusions. Firstly, for any 0 < X < I the behaviour of the model is similar 
t o  that of the S = 1 Heisenberg chain. Secondly, the quantity defined as the central 
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charge does not have a well defined meaning for this model except at X = 0, as it 
appears to vanish for any non-zero A. If the central charge were meaningful for this 
model, one might expect it to be either c = 1, i.e. the same as for the S = 4 Heisenberg 
chain, or c = 1.5 which is the value for the integrable S = 1 Hamiltonian [lQ]. Our 
numerical results rule out both of these values. As a further check on the possible 
criticality of the (2 x i) model we have studied the scaling of the central charge as 
a function of (In N)-3. With a proviso due to the relative shortness of the chains we 
can treat numerically, the scaling is satisfied only by the X = 0 result. 

Summing up the results we have reported in this paper, we can conclude that 
even in numerical studies, central charge and scaling dimension are good indicators of 
criticality. In the determination of the scaling dimension it is crucial to use the method 
of linear combination of the singlet-triplet and singlet-singlet gaps first introduced in 
[ll]. Otherwise the leading logarithmic corrections to the finite size results will mask 
the true asymptotic behaviour even for relatively long chains [13]. 

Our results also lend further support to our previous findings [9,14] that in the 
limit N -+ 00 the composite (n x i) models behave like the S = 5 Heisenberg 
chains for all X > 0. On the other hand, the methods used in this work seem to 
distinguish the properties of integer spin Heisenberg chains from those of half-integer 
spin Heisenberg chains better than was possible by using only the lowest gaps to 
excitations [Q, 141. The gaps alone, at least for numerically accessible chain lengths, 
did not provide [Q, 141 conclusive evidence for either criticality or non-criticality of the 
isotropic antiferromagnetic point of the Heisenberg chain. 
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