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Abstract. We investigate, using numerical computation of the eigenvalues of
short chains, the critical behaviour of two composite spin models, which interpolate
smoothly between isotropic Heisenberg chains with different values of §. For the
first model which interpolates between S = 1 and § = 2 we find that the model
is critical over the whole range and the values of the central charge and critical
exponents (scaling dimensions} appear to be constant in the thermodynamic limit. In
the second model, which interpolates between S = ;f; and § = 1 we find that, except
at §= %, the central charge is effectively zero, implying a non-critical behaviour.

1. Introduction

Over the last few years critical properties of spin models have been studied with
increasing interest. There are a number of reasons for this interest, and one of them is
the conjecture made by Haldane {1] some while ago of the difference between integer
spin and half-integer spin antiferromagnets. Another reason for this interest is the
recent discovery of the conformal invariance [2] at the transition point of the models
exhibiting a second order phase transition. Spin models provide a good testing ground
for studying the consequences {3] of this invariance.

A field of research which quite recently has become a part of the studies concerning
criticality is that of integrable models [4]. An effective use [8] of the methods based on
Bethe’s ansatz has proved to be a powerful way of evaluating quantities characteristic
of conformally invariant models. The usefulness of these methods relies on the fact that
the spectrum of the integrable SU(2) spin-S models consists [6] of a gapless doublet
of § = £ spin waves which form the (two-particle) singlet and triplet excitations of
physical states,

The critical exponents of the integrable spin models [7] are smooth functions of
the length of the spin S. In contrast with this, the isotropic and nearly isotropic
Heisenberg antiferromagnets with a half-integer spin are all believed {1,8] to have the
same critical exponents, and those with an integer spin are believed [1,8] to be non-
critical. A slightly worrying feature of the original [8] analysis leading to this result
is, however, that when applied to the integrable spin models it produces [9] for these
the same results as for the Heisenberg antiferromagnets, 1.e. half-integer spin models
should be critical but integer spin models non-critical. The analysis was based on a
mapping of the models to a quantum field theory model, the nonlinear o model.
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Subsequently a modified {10] form of the method has been developed which gives
more insight into this very subtle problem. Based on the modified version of the
analysis [10], and also on other even earlier arguments [11], it is now expected that the
integrable spin models correspond to multicritical points in the space of couplings, Any
perturbation of the couplings specific to the integrable models will drive the models
away from the integrable points, and the spectra and the correlation functions of the
models will change accordingly. In a model with an integer spin these perturbations
will cause a gap to appear in the excitation spectrum and the correlation functions
will decay exponentially. In a model with a half-integer spin the spectrum will remain
gapless, i.e. it is critical, and the critical exponents of the correlation functions will
change to become those of the S = 5 isotropic Heisenberg antiferromagnet.

There is now also numerical evidence {11-13] for the different critical behaviour
of the integrable and non-integrable spin models. The work of Ziman and Schulz [11]
in particular is very interesting, because they have found a method of getting rid of
the leading finite size correction, which is logarithmic, to the scaling dimensions of
the relevant operators. The idea of Ziman and Schulz is to consider a suitable linear
combination of the primary singlet-triplet gap and the smallest singlet-singlet gap,
and is based on the degeneracy in the infinite length limit of these gaps. In this way
they were able to show in a model which interpolates between the integrable S =
model and the usual § = 2 5 Heisenberg model that whenever the mode] is away from
the mtegrable point its cntlcal exponents are those of the § = 1 Heisenberg model.

In the analysis of spin models with spin higher than a half the composite spin
representation has been shown [9,14,15] to provide new insights. Having at each
lattice site an equal number of shorter spins, the original spin problem is now replaced
by that of a set of coupled chains with shorter spins. It is then possible to have at each
site a whole sequence of total spins. The composite spin representation can however
be used because the low lying states of the composite spin Hamiltonian are [9,14] in
the subspace of the largest total spin. The lowest part of the spectrum of a §=1
model for example is exactly given by two coupled S =4 chains. A S = 5 model
can be represented by either three coupled § = 3 L chains or two coupled chains with
S= % and 5§ = 1, respectively. Varying the couplings of the chains makes it possible
to interpolate between models with different spin lengths. It is natural to extend the
previous work {9, 14], and ask in a different way how the critical behaviour is changed
when we interpolate between models with different spin lengths,

A convenient way to study the critical behaviour of spin models is to calculate [11-
13] their conformal anomaly or central charge and the anomalous or scaling dimensions
of the relevant operators. The central charge ¢, which is used to divide the models into
different universality classes, can be easily determined from the finite size corrections to
the ground state energy of the model. Conformal invariance predicts that, for a chain
of N sites, the ground state energy per site, E,(N)N~1, approaches its asymptotic
value ¢, as [2]

Ef(NIN! = ¢, = dmcoN"2 + O(N73) (1.1)

where v is the spin wave velocity,

The scaling dimensions of the relevant operators can be determined from the finite
size corrections to the excitation energies. The excited states related to an operator
¢ form ‘towers’ characterized by the scalmg dimension X, and the spin 5, of that
operator such that the excitation energies and the correspondmg momenta can be
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written as [2]

)
By wi(N) = Bo(N) + (X + 0+ 1) + O(N72)

, (1.2)
Pop(N) = -A—"';(S¢ +n-a)+OWN"Y)  an'=01,2....

In the work reported in this paper we have only considered the lowest excited
states with n = n/ = 0, i.e. excitation energies

€= By o(N) — Eo(N) = ?%JQ, +O(N7?). (1.3)

In this paper we shall analyse the composite spin models by studying their possible
conformal invariance. We wish to determine in particular the crossover from the § = %
behaviour of the decoupled chains to the § = ;’2— behaviour of the ‘completely’ coupled
chains. This crossover will be contrasted with that of the supposedly non-critical
8 =1 chain composed of two coupled S = 1 chains. In section 2 we shall introduce
the composite spin models which are used ir this work., The numerical results for the
central charge and for the scaling dimensions will be given in section 3, and the results
will be discussed in section 4.

2. Composite spin models

A general spin model with isotropic nearest neighbour couplings can be defined as

N 2§
H= Zza’k(si : Si+1)k (2.1)
i=1 k=0
where a;, are arbitrary constants and |S;| = S. The usual Heisenberg model

corresponds to the case when only ¢, is different from zero. The integrable spin models
correspond to particular choices of the constants a;, which are different for each 5. In
this work we shall concentrate on the Heisenberg case, but a similar analysis could be
made [14] of the more general model.

As discussed in the previous section the composite spin models can also be viewed
as coupled spin chain problems. The simplest case is that of two chains, one with
spins o; the other with spins 7;. The operators o; and 7; are not necessarily spin—%
operators, the only restriction we impose on these operators is that all spins on the
same chain are equal, i.e. |&;| = o and |7;| = 7 independent of the site ;. This ensures
that at A = 0 and A = 1 the total spin at each site is a good quantum number. The
Hamiltonian of the simplest non-trivial coupled two-chain problem can be expressed
in the form

H = Z{O’i .o.i+1 +Ti '?i_l_l + Aa’i .Ti'{'l "' ATt' 'U'i_l_l}- (2-2)
i

The coupling terms between the two chains are in (2.2) multiplied by the ‘interpolation
parameter’ A, and they will be treated as a perturbation of the uncoupled chains.
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At A = 0 the model (2.2) obviously describes two uncoupled chains, The properties
of the mode] now depend on the spin lengths of the individual chains, ¢ and 7. We
have shown earlier [9,14] that if e.g. ¢ = 7 = 1, the lowest part of the spectrum at
A = 1 is identical to that of a single spin-1 chain. It is expected in general that the
two-chain model will be at A = 1 a good representation of the single chain model with
spin § = ¢+ 7. If 0 = r =  we shall call the Hamiltonjan (2.2) the (2 x 1) model.

Hamiltonian (2.2) can easily be generalized to include three chains with spins o,
7; and p;. In this case the Hamiltonian is

H ="Z{pi Py F O O F T Ty e (T o) + AT (P 0 yy)
:

+Ap; - (T + o)} (2.3)

Let us assume that (2.3) describes the (3 x Z) model witho =r=p=%. At A =0
the chains are again decoupled. Clearly at A = 1 the coupling will be so strong as to
destroy the individuality of the chains. Varying A between these two limiting values
will cause the properties of the model to cross over from the spin-} behaviour to the
spin-£ behaviour.

At A = 0 the finite size corrections to the ground state and excitation energies
will appear independently in all three of the uncoupled chains. Therefore the central
charge will be three times that of the § = 1 Heisenberg chain, ¢(A = 0) = 3. At
A = 1 the central charge should be equal to that of the 5 = % Heisenberg chain, i.e,
e(A = 1) = 1. supposing that the critical properties of the two Heisenberg models are
the same. We shall show in the next section our numerical result for ¢(A), 0 € A <1

The scaling dimension of both the S = 1 and § = 2 Heisenberg chain is
X = }. Since in the decoupled three-chain problem the Jowest excitations arise
frorn exciting only one of the chains, the composite spin model (2.3) should have
19] X (.«\ =0)=X(A=1)=05. Unfortuna.tely, there are logarithmic terms in the
finite size dependence of the excitation energies which make the evaluation of X rather
difficult. We shal! follow Ziman and Schulz and consider, instead of the lowest singlet,
A,, and triplet, A,, gaps separately, the linear combination

A= 3(A, +34,). (2.4)

Since the singlet and triplet excitations are predicted to be degenerate in the
thermodynamic limit, A defined by (2.4) should give the correct scaling dimension.
The advantage of using {2.4) is that the leading logarithmic corrections are cancelled,
and a much better estimate of the scaling dimension should be achieved.

3. Numerical results

We have solved numerically the few lowest eigenenergies of the models (2.2) and (2.3).
In these calculations for fintte chains we have imposed pericdic boundary conditions
and determined by exact diagonalization or by the Lanczos method the few lowest
eigenstates in sectors characterized by the z-component of the total spin and by the
momentum, For the (2 x %) model (2.2), we have results for up to N = 10 sites, and
for the (3 x 1) model (2.3), we have results for up to N = 8. At the points A = 0 and
A =1 which correspond tothe S =% and S=1 (§) Heisenberg models, respectively,
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our results coincide with the published numerical data for these models which exist
for up to N = 18 in the S = } case [16], and for up to N = 16 (12) in the S =1 (3)
case [13]. In all cases the ground state of the system is a spin singlet state with zero
momentum, and the first excited state is, at least in the range of A we consider, in the
triplet spin sector,.

We shall first consider the (3 x 3) model (2.3). In order to find if this model is
critical, we have calculated its ground state energy for N and N +2, and inferred from
these the central charge ¢ by using (1.1). In this way we get successive estimates for c.
The numerical value of the central charge depends also on the spin wave velocity which
we have determined by numerically calculating the finite size spectrum. To improve
the accuracy we have assumed that for finite chains the spectrum can be expressed in
the form

(k) =A(A,N)§+0(A,N)sink 3.1)
v(h, N) = 5(N) + vy (N)A + 0p(N)A?

where A(A, N) is the gap between the lowest ¥ = 0 and & = = states which is finite
for all N < oo. We have also assumed that (A, N) has a well defined expansion in A,
and have found it is enough to include the terms up to the second order.

We have assumed that v;(N), j = 0,1,2, have well defined expansions in N~1,
and by using polynomial extrapolation to the limit N — co we find that

v(A) = v(X, 00) = L+ 2.1126A + 0.2526° (3.2)

for the (3 x 1) model.

We show the central charge in figure 1 as a function of the interpolation parameter
A. It appears from figure 1 that at A = 1 the central charge approaches the valuec¢ = 1
which is the same as that of the § = 1 Heisenberg model. This suggests that the S = %
and § = 3 Heisenberg chains are in the same universality class, in agreement with
[11]. We note in figure 1 that for a given NV there is a range of A over which ¢ remains
effectively constant at the § = % value. This range increases as N increases and
in the limit N — co seems to become the whole interval 0 < A £ 1. This result
supports our previous findings [9,14] for the composite spin model. At A = 0 the
central charge approaches the expected value ¢ = 3. To investigate better the scaling
of ¢ as a function of N we show in figure 2 a plot of ¢ as a function of (In N)~2 which
is the leading correction to ¢ in § = % type models. We show in figure 2 only one
intermediate value of X, A = 0.25, because for A > 0.25 the curves approach the A = 1
curve vary rapidly and would appear as one curve. This figure shows clearly the two
limits in the scaling, e{(A =0)=3 and (A > 0) = 1.

The other quantity we have determined for the (3 x 1) model is the scaling
dimension of the operator responsible for the primary gap in the finite size excitation
spectrum. Because of the large finite size cotrections in the primary gap which make
the evaluation of the scaling dimension very difficult [11, 12] we have used the method
of {11] as explained in the introduction.

We show in figure 3 the scaling dimension related to the singlet-triplet and singlet—
singlet gaps, and also the result of taking the linear combination of the two, We show
the results for only ¥ = 4 and N = 8 because the singlet~triplet curve for N = 6 would
be too close to the N = 8 curve to be clearly seen. It is evident that drawing on the
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Figure 1. Central charge of the (3 x %) Figure 2. Scaling against {In V)~2 of the
model. Filled circles mark the values which are  extrapolated central charge of the (3 x :f,-) model.
determined from calculated values for N and  The numbers on the right refer to the values of
N + 2. The upper curve is the result for ¥V = 4, A

and the lower curve for N = 64. For A = 0 and

A = 1 there are results for N = 8 and N = 10,

and the expected limiting values are also marked.

singlet—triplet results only [12] would lead to an erroneous extrapolation of the scaling
dimension, convergence is so sow that extremely long chains would be needed in order
to find the true asymptotic behaviour. In contrast with this, the linear combination
of the two scaling dimensions seems to converge very rapidly, giving reliable estimates
already for rather short chains. This result is, of course, very much in agreement with
the findings of Ziman and Schulz [11], who, however, had a different model and used
a completely different numerical procedure. Our numerical results, which for general
A exist only for N up to 8, are consistent with a scaling dimension X = 0.5 for all
0 < A< 1inthe N — oo limit. This is another indication of the S =  like critical
behaviour being generic for half-integer spin systems.

According to [11] the leading correction to the scaling dimension should be
proportional to (In N)~2. We have therefore plotted in figure 4 the scaling dimension
as a function of (In N)~2. We show the results mainly for A = 0 and A = 1, the curves
for other values of A lie between the A = 0 and A = 1 curves. For the available chain
lengths the scaling dimensions of the singlet-triplet and singlet-singlet gaps are very
far from their assumed asymptotic values. The linear combination of the two seems
to scale quite well even for the short chains we could do numerically, the A = 0 curve
is almost flat, but it is so close to the asymptotic value that the question of scaling is
not very relevant,

Our results for the (3 x 3) model which interpolates between the S = 1 and §

— 3
- . . - . * 'y x - 2
Heisenberg chains seem strongly to indicate that this model is critical forall0 € X € 1.
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Figure 3. Scaling dimension of the (3 x %) Figure 4. Scaling against {In N)~? of the scaling
model. Full circles {®) denote the singlet-triplet  dimension of the (3 % :13) model. Symbols are the
values, open circles (O) the singlet—singlet values,  same as in figure 3. The numbers on the right
and crosses (x) the linear combination (2.4) of  refer to the values of A. The non-monotronic
the two. The lines are guides for the eye. behaviour with respect to ) is in accordance with

figure 3.

We still have to prove, however, that the numerical analysis we have made is accurate
enough to make possible a clear distinction between critical and non-critical models.
To this end we have made the same analysis for the (2 x 3} model which interpolates
between the S = 3 and § = 1 Heisenberg chains. We describe next our results for the
(2 x ) mode! of a quantity which would be the central charge if it existed.

The spin wave velocity of the (2 x ) model is determined in the same way as that
of the (3 x 1) model. Therefore we will find the correct velocity if there is no gap in

the excitation spectrum at & = 0. We find that
v(A) = &m +2.5127) — 0.3333)%. (3.2)

In figure 5 we show the central charge (if it exists) for the (2 x i) model as a
function of A for various N. This is calculated in the same way as figure 1 for the
8 x %) mode]l. The most obvious difference is that in figure 5 there does not appear
to be a region over which ¢ is effectively constant. The value of ¢ in the limit N — co
appears to be small except at A = 0. To investigate this further we show in figure 6
a plot of ¢ as a function of {In N)~3 which is the expected form of the correction to
the N2 scaling of Eo(N) if the model is critical and is in the same universality class
as the § = £ Heisenberg chain. This figure shows rather clearly the difference in the
limiting values for A = 0 and A # 0, and should be compared with figure 2.
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Figure 5. ‘Central charge’ of the {2 x %) model!  Figure 6. Scaling against {InN)™% of the
which has been calculated in the same way as  ‘central charge’ of the (2 x %) model. Symbois
that of the (3 x 1) model, The curves from top  are the same as in figure 2.

to bottom are the results for N = 4, 6 and 8,

respectively. The results for N = 10 and 12 are

shown only for A = 1, and the expected Limiting

value js marked for A = 0,

4, Discussion

We have studied in this paper the finite size scaling properties of the ground state
and the first few excited states of the (2 x 3) model and (3 x 3) model. These
models interpolate between the S = I Heisenberg chain and the $ = 1 and § = 2
Heisenberg chains, respectively. Our analysis complements that of Ziman and Schulz
[11] whose model interpolates between the integrable S = 3 model and the S = }
Heisenberg chain. Another aspect of our analysis is to estimate the usefulness of the
rumerical determination of the central charge and the scaling dimension as test of
critical behaviour.

Our results for the (3 % -;-) mode) strongly support the conjecture we have made
earlier {9, 14] that, whenever A > 0, the model behaves rather like the § = £ Heisenberg
chain. This conclusion is suggested by the scaling of the S = 2 like plateau in figure
1. Our numerical findings lend also strong support to the conclusion that the central
charge of the (3 x 1) model is ¢ = 1 (for all A > 0), and its scaling dimension
is X = % [17]. Furthermore, these quantities seem to scale as a function of N in
accordance with the leading logarithmic corrections to the corresponding quantities
of the § = 3 Heisenberg chain [18].

As to our numerical findings for the {2 x 1) model, they also provide evidence for
twofold conclusions. Firstly, for any 0 < A £ 1 the behaviour of the model is similar
to that of the S = 1 Heisenberg chain. Secondly, the quantity defined as the central
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charge does not have a well defined meaning for this model except at A = 0, as it
appears to vanish for any non-zero A. If the central charge were meaningful for this
model, one might expect it to be either ¢ = 1, 1.e. the same as for the § = % Heisenberg
chain, or ¢ = 1.5 which is the value for the integrable S = 1 Hamiltonian [19]. Our
numerical results rule out both of these values. As a further check on the possible
criticality of the (2 x %) model we have studied the scaling of the central charge as
a function of (In N)~3. With a proviso due to the relative shortness of the chains we
can treat numerically, the scaling is satisfied only by the X = 0 result.

Summing up the results we have reported in this paper, we can conclude that
even in numerical studies, central charge and scaling dimensjon are good indicators of
criticality. In the determination of the scaling dimension it is crucial to use the method
of linear combination of the singlet—triplet and singlet—singlet gaps first introduced in
[11). Otherwise the leading logarithmic corrections to the finite size results will mask
the true asymptotic behaviour even for relatively long chains {13).

Cur results also lend further support to our previous findings [9, 14] that in the
limit N — oo the composite (rn x i) models behave like the § = % Heisenberg
chains for all A > 0. On the other hand, the methods used in this work seem to
distingunish the properties of integer spin Heisenberg chains from those of half-integer
spin Heisenberg chains better than was possible by using only the lowest gaps to
excitations [9,14]. The gaps alone, at least for numerically accessible chain lengths,
did not provide [9, 14] conclusive evidence for either criticality or non-criticality of the
Isotropic antiferromagnetic point of the Heisenberg chain.

References

f1] Haldane F D M 1983 Phys. Letft. 93A 464-8; 1983 Phys. Rev, Lett. 50 11536
[2] Polyakov A M 1970 Pis. Zh. Eksp. Teor. Fiz, 12 538—41 (Engl. Transl. 1970 JETP Leit. 12
381-3)
Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241 333-80
For a recent review see Cardy J L 1987 Phase Transttions and Critical Phenomena vol 11, ed
C Domb and J L Lebowitz (New York: Academic)
[3] wvon Gehlen G, Rittenberg V and Ruegg H 1985 J. Phys, A: Math. Gen. 19 107-20
Hamer C J 1985 J. Phys. A: Math. Gen, 18 L1133-7
[4] Seee.g. Faddeev L D} and Takhtadjan L. A 1987 Hamiltonian Methods in the Theory of Solitons
(Berlin: Springer)
[5] See [3] and de Vega H J and Karowski M 1987 Nucl. Phys. B 285 619-38
Woynarovich F and Eckle H-P 1987 J. Phys. A: Math. Gen. 20 L97-104
[6] Takhtadjam L A 1982 Phys. Lett. 8TA. 479-82
Babujian H M 1982 Phys. Lett. 90A 479-82; 1983 Nucl. Phys. B 215 317-36
[7] Bogoliubov N M, Izergin A G and Reshetikhin N Yu 1987 J. Phys. 4A: Math. Gen. 20 5361-9
Izergin A G, Korepin V E and Reshetikhin N Yu 1989 J. Phys. A: Math, Gen. 22 2615-20
Johannesson H 1988 J. Phys. A: Math. Gen, 21 L6114
[8] Affleck I 1985 Nucl. Phys. B 257 379406
9] Sdlyom J and Timonen J 1986 Phys. Rev. B 34 487-9
10] Affeck I and Haldaue F D M 1987 Phys. Rev. B 36 5291-300
[11] Ziman T and Schulz H J 1987 Phys. Rev. fLett. 59 140-3
[12] Alearaz F C and Martins M J 1988 J. Phys. A: Math. Gen. 21 4397-413
[13] Moreo A 1987 Phys. Rev. B 35 8562-5
[14] Sélyom J and Timonen J 1988 Phys. Ren. B 38 6832-48; 1989 Phys. Rev. B 39 7003-8; 1989
Phys. Rev. B 40 T150-61
[15] Luther A and Scalapino D J 1977 Phys. Hev. B 16 1153-63
den Nijs M P M 1082 Physice A 111 273
Timonen J and Luther A 1985 J. Phys. C: Solid State Phys. 18 1439-54



3352 J Timonen el al

[16]
[17]
[18]
[19)

Schulz H J 1986 Phys. Rev. B 34 6372-85

Glaus V and Schneider T 1984 Phys. Rev. B 30 215-25

Notice that some authors prefer to use the critical exponent 1 = 2X.
Woynarovich F 1987 Phys. Rew. Lett. 59 259-61

AHleck 11986 Phys. Rev. Leil. 56 746-8



